As much as I wanted the Alien 680 H4 I’ve been flying to work out, I’m not happy with it. I’ve gone through quite a bit of work trying to get this frame to fly well but it just doesn’t. I’ve started ripping it apart today and have a new, different 680 Alien folding frame ready to build.
The good part about this frame is the K shape which puts the camera even with the front two motors. That helps keep props out of the photos/video. But because of that design, the battery needs to be put way back to counterbalance it. That means most of the mass is NOT in the center of the bird, where in my opinion it should be. As a result there are some funky things that happen when flying. The bird looks almost like a teeter-totter in wind. When stopping or slowing it is not smooth and I worry about it flipping in the air. I’m thinking the frame and the mass distribution is the issue and surely hoping that it isn’t the MiniX flight controller.
Soon I’ll be sure.
I’m willing to try out a new, more symmetrical frame with the same hardware. That frame has already arrived and I hope to have Alien 2.0 flying soon. Naturally I’ll post a build log.
Perfect For the Beginner or the Experienced Flyer, Typhoon Q500 4K Offers Unmatched Smart Features for a Safe and Easy Flight
ONTARIO, CA (June 30, 2015) — Yuneec International, the world leader in electric aviation, announced the launch of the Typhoon Q500 4K today. The newest member of the Typhoon family produces unparalleled 4K video quality and 12 megapixel still images while delivering Yuneec’s standard of ready, easy and safe flight to consumers everywhere.
The Typhoon Q500 4K is an aerial and ground imaging solution, perfect for both skilled and beginner drone pilots and photographers. It offers up to 25-minutes of flight time while filming with its CGO3 4K camera. The unit comes ready to fly with a standard ST10+ Personal Ground Station featuring a 5.5-inch Android touchscreen display.
“We are very excited to be introducing one of the world’s first 4K camera drones,” said Tian Yu, chief executive officer of Yuneec International. “The Typhoon 4K has elicited the attention of everyone from professional cinematographers to techie geeks to those just discovering drone aviation. No matter the audience, Yuneec produces spectacular images and provides an unparalleled flying experience.”
The 3-axis anti-vibration CGO3 gimbal camera and the optimized fixed focus lens capture smooth videos and crisp images which are stored to an internal memory card and streamed in real time to the ST10+ screen. In addition, all of the controls typically used by professionals are accessible from the ST10+ Personal Ground Station; video resolution and white balance can be adjusted. Additionally, light exposure, ISO and shutter speed can be controlled either automatically or manually making higher quality shots available instantly. The camera features a 115-degree wide-angle distortion-free lens, the ability to shoot slow motion video at 1080p 120 FPS and allows users to take pictures in RAW (DNG) and JPEG format while simultaneously recording video.
The Steady Grip handheld device ensures ground shots are as smooth as those taken from the air. The Steady Grip user is able to capture images, shoot videos and control the CGO3 gimbal camera all from the easily downloadable mobile app, CGO3.
The Typhoon 4K comes with several smart features built into the system, including Geo-fencing, Speed Control, Follow Me and Watch Me. The Q500 4K also maintains the Typhoon family’s focus on safety with features like Dynamic Return Home, Low-Battery Return Home and FAA No Fly. The Typhoon Q500 4K system is available for the suggested retail price of $1299 USD. For more information, check out this video or visit www.yuneec.com.
Below is a reader’s digest version of the steps I’ve gone through to get decent GoPro video with my 680mm Alien H4 quadcopter. I’ve been doing some “question and answer” on some of my builds and this would apply to a recent reader’s question:
“How do you test for vibrations? Have no clue how to do that.”
I can’t remember when I started building this Alien 680mm quadcopter. I had it built quite quickly, but flipped it on its maiden flight because of having some motor cables mixed up. That flip, or a later crash may have been part of the cause of my frustrations with getting decent video out of the Arris CM3000PRO 3-axis GoPro gimbal setup.
Balancing Multirotor Propellers and Motors
I’ve been going nuts trying to get this bird to produce lower vibrations and good enough video quality with a GoPro. I’ve been fighting GoPro jello, the appearance of lines, jiggling, and vibration in the video. The cause is typically too much vibration coming from the motors and props of the bird. That vibration is due to the props not being balanced and/or the motors not being balanced.
I spent literally DAYS trying to balance the motors on this quadcopter, Sunnysky 4110S/400kv motors. There are a few ways one can balance motors. One popular way is to use an app for an Android or iOS smartphone which measures vibration. You can attach the phone to the motor arm and view the vibration levels (and also note the audible vibration with your ears). Put a small piece of tape on the side of the motor and spin it up and watch the meters. Move the tape and see if the levels get better or worse. Tape, analyze, move tape, analyze, repeat until vibrations are at their lowest.
The photo above shows two measurements I took with my Samsung Galaxy S5 and a vibration app. The top one is an unbalanced or bad motor, and the bottom one is balanced.
Here’s a sample video comparing one motor which was bad (below) and one good new one:
After mucking with them for hours I finally decided that the motors were either defective, or damaged in the flip or crash since they vibrated badly no matter how much I attempted to balance them. I thought two motors were bad so I ordered two new ones. Once I replaced the two rear motors with new ones the difference was huge, enough to make me order two more and replace them all.
Once the props were balanced and the new motors installed and balanced (not much balance needed), the video quality was greatly improved. I was moving the right direction. But it was nowhere near good enough. Still a lot of jello, bouncing, and unusable results.
Tweaking Gimbal’s Physical and Digital Setup
I did dozens of test flights making tweak after tweak this last couple of weeks. The GoPro/gimbal setup is an Arris CM3000PRO, a 32-bit SimpleBGC driven unit as pictured below:
I messed with the PID’s for hours and hours. I’d get slight improvements but not good enough. I even messed with the rubber dampening balls which isolate the gimbal from the bird. If I used four soft ones the bad jello was eliminated, but I had “bounces” in the video. If I used harder dampening balls the bouncing went away but the jello came back. A combination of the two was a combination of bouncing and jello.
Almost to the point of giving up on this bird and either selling it on eBay or ripping it apart and buying a new frame, I decided to try something totally different. I found my old CM3000 gimbal, not the “pro” model. This one is 8-bit, rather than 32 bit and just slightly different than the old one One difference is that the top plates which house the dampening balls can hold eight, rather than four. To get the plate to fit on my old DJI Phantom I cut off two of them on one plate, but I still could use six dampeners rather than four. I remembered that setting up my big gimbal on my hexacopter the best results were with a lot of soft dampening balls.
Without even playing with the PID’s of the 8-bit gimbal, I put six soft balls on and flew it. BIG difference. Unreal. Just changing the gimbal alone jumped the video quality from a 5 out of 10 to a 7. I then did many successive fly-analyze-tweak sessions and narrowed the gimbal down to where I thought it was best.
Things were improving but still not good enough.
Dampening Flight Controller
I took a look at the logs from the bird after a while. The MiniX flight controller I’m using stores logs of each flight with some valuable information. One of the items in the log is a vibration graph, showing the vibration level of each flight. The vibration levels, from my experience with the SuperX flight controller (a more expensive product by the same company XAircraft), were way too high even after all the motor replacement and balancing of props and motors. I began to think that though I was certainly making some improvements by adjusting the gimbal, the issues would not be resolved until I reduced the overall vibration of the bird. So now what?
The instructions which come with the MiniX suggest using their adhesive tape and attaching the controller directly to the frame for best flying results. That’s what I did. But the frame came with a vibration isolation plate and some pink dampening rubber balls to isolate the flight controller from vibration. Some controllers can over-react to vibrations if they’re not insulated from the bird enough, causing very bad flying performance and high vibrations. I thought about my SuperX bird, which has very low vibes and great video quality. That controller is literally mounted on a business card CD as a plate, with 3M 20LB double-sided tape. Yeah sounds funny, but it fit perfect and is made of Lexan, a flexible but highly strong plastic. The CD business card is also attached to the frame with the same tape. That’s more insulation by far than the white double-sided tape that came with the MiniX. I thought of trying that tape, but instead decided to go with the frame’s isolation plate and pink balls. I have yet to look at the logs and compare them since I did that, but that was one part of what made a big difference in video vibes.
The first video I shot with the flight controller mounted to the isolation plate was notably better, but just barely lacking in quality.
Neutral Density Filter
I dug through my piles of GoPro stuff and finally found a neutral density filter I bought quite a while ago. The filter attaches to the lens of the GoPro and darkens the amount of light hitting the lens. This in turn makes the camera lower its shutter speed to adjust for the amount of light coming in. This lower speed can make a difference in reducing GoPro vibration and smoothing out the video as well.
At that point I tweaked the “I” in the PIDs of the gimbal a few more times and settled in on what has now produced a couple of minutes of video I’d call high quality, good enough to sell or use for production.
For my own reference or help to others with a similar setup, here are my PID’s for the CM3000 gimbal, 8-bit setup:
Below is an unstabilized chunk of video showing those first few seconds of good video quality without the neutral density filter:
And below is another video of a similar flight, ND filter installed and with some slight stabilization done in Adobe Premier. This is USABLE!
Whew. That’s months of work broken down into 1200 words of a blog post. I hope this setup works the next time I use it.
Now I’m “hoping” this bird can be my more portable solution for aerial video which can be taken on hikes, skiing, traveling and on more mobile applications. The reason I said video and not photo is this is a GoPro and they don’t tend to produce decent photos.
Next for this bird is a 3-axis gimbal setup for a bigger but better point and shoot camera like a Sony RX100 or Canon GX7, and perhaps some bigger batteries.
Conclusion
To sum up the multirotor helicopter video vibration reduction process in a few quick bullets:
Good luck on your build(s) and I hope this helps some of you fellow builders and pilots out there.